实用语义网

出版时间:2009-2  出版社:人民邮电出版社  作者:(美)阿利芒,(美)亨德勒 著  页数:330  字数:413000  
Tag标签:无  

前言

In 2003, when the World Wide Web Consortium was working toward the ratifi-cation of the Recommendations for the Semantic Web languages RDF, RDFS, andOWL, we realized that there was a need for an industrial-level introductorycourse in these technologies. The standards were technically sound, but, as istypically the case with standards documents, they were written with technicalcompleteness in mind rather than education. We realized that for this technol-ogy to take off, people other than mathematicians and logicians would haveto learn the basics of semantic modeling.Toward that end, we started a collaboration to create a series of trainingsaimed not at university students or technologists but at Web developers whowere practitioners in some other field. In short, we needed to get the SemanticWeb out of the hands of the logicians and Web technologists, whose job hadbeen to build a consistent and robust infrastructure, and into the hands of thepractitioners who were to build the Semantic Web. The Web didn't grow tothe size it is today through the efforts of only HTML designers, nor would theSemantic Web grow as a result of only logicians' efforts.After a year or so of offering training to a variety of audiences, we delivered atraining course at the National Agriculture Library of the U.S. Department ofAgriculture. Present for this training were a wide variety of practitioners inmany fields, including health care, finance, engineering, national intelligence,and enterprise architecture. The unique synergy of these varied practitionersresulted in a dynamic four days of investigation into the power and subtlety ofsemantic modeling. Although the practitioners in the room were innovativeand intelligent, we found that even for these early adopters, some of the newways of thinking required for modeling in a World Wide Web context weretoo subtle to master after just a one-week course. One participant had registeredfor the course multiple times, insisting that something else "clicked" each timeshe went through the exercises.This is when we realized that although the course was doing a good job ofdisseminating the information and skills for the Semantic Web, another, morearchival resource was needed. We had to create something that students couldwork with on their own and could consult when they had questions. Thiswas the point at which the idea of a book on modeling in the Semantic Webwas conceived. We realized that the readership needed to include a wide varietyof people from a number of fields, not just programmers or Web application developers but all the people from different fields who were struggling to understand how to use the new Web languages.

内容概要

语义网的发展孕育着万维网及其应用的一场革命,作为语义网核心内容的语言——RDF和OWL,逐渐得到广泛的重视和应用。本书是语义网的入门教程,详细讲述语义网的核心内容的语言,包括语义网的概念、语义建模、RDF、RDF Schema、OWL基础等。    本书对于任何对语义网感兴趣的专业技术人员都是十分难得的参考书。

作者简介

Dean Allemang,世界知名的语义网专家。英国剑桥大学数学专业硕士,美国俄亥俄州立大学计算机专业博士。有丰富的语义网开发经验,曾创办了最早的一家语义网技术公司,目前担任美国领先的语义网技术公司TopQLladrant的首席科学家。JoumalofWebSemantics编委。世界最大的语义网研究机构DigitalEnterprise研究院的评审委员会成员。自2003年起一直担任国际语义网会议工业应用方向的主席。
  James Hendler,语义网的创始人之一,万维网联盟语义网协调组成员。美国人工智能协会和英国计算机协会会士。曾任美国国防部高级研究计划局(DARPA)的信息系统办公室首席科学家。目前是Rensselaer理工学院教授,并兼任麻省理工学院Web科学研究项目的副主任。他还是IEEEIntelligentSystems的主编,也是第一位担任美国《科学》杂志评审委员的计算机科学家。

书籍目录

CHAPTER 1 What Is the Semantic Web?  What Is a Web?  Smart Web, Dumb Web  Smart Web Applications  A Connected Web Is a Smarter Web  Semantic Data  A Distributed Web of Data  Features of a Semantic Web  What about the Round-Worlders?  To Each Their Own  There's Always One More  Summary  Fundamental ConceptsCHAPTER 2 Semantic Modeling  Modeling for Human Communication  Explanation and Prediction  Mediating Variability  Variation and Classes  Variation and Layers  Expressivity in Modeling  Summary  Fundamental ConceptsCHAPTER 3 RDF--The Basis of the Semantic Web  Distributing Data Across the Web  Merging Data from Multiple Sources  Namespaces, URIs, and Identity  Expressing URIs in Print  Standard Namespaces  Identifiers in the RDF Namespace  Challenge- RDF and Tabular Data  Higher-Order Relationships  Alternatives for Serialization  N-Triples  Notation 3 RDF (N3)  RDF/XML  Blank Nodes  Ordered Information in RDF  Summary  Fundamental ConceptsCHAPTER 4 Semantic Web Application Architecture  RDF Parser/Serializer  Other Data Sources--Converters and Scrapers  RDF Store  RDF Data Standards and Interoperability of  RDF Stores  RDF Query Engines and SPARQL  Comparison to Relational Queries  Application Code  RDF-Backed Web Portals  Data Federation  Summary  Fundamental ConceptsCHAPTER 5 RDF and Inferencing  Inference in the Semantic Web  Virtues of hfference-Based Semantics  Where are the Smarts?  Asserted Triples versus Inferred Triples  When Does Inferencing Happen?  Inferencing as Glue  Summary  Fundamental ConceptsCHAPTER 6 RDF Schema  Schema Languages and Their Functions  What Does It Mean? Semantics as Inference  The RDF Schema Language  Relationship Propagation through  rdfs:subPropertyOf  Typing Data by Usage--rdfs:domain  and rdfs:range  Combination of Domain and Range with  rdfs:subClassOf  RDFS Modeling Combinations and Patterns  Set Intersection  Property Intersection  Set Union  Property Union  Property Transfer  Challenges  Term Reconciliation  Instance-Level Data Integration  Readable Labels with rdfs:label  Data Typing Based on Use  Filtering Undefined Data  RDFS and Knowledge Discovery  Modeling with Domains and Ranges  Multiple Domains/Ranges  Nonmodeling Properties in RDFS  Cross-Referencing Files: rdfs:seeAlso  Organizing Vocabularies: rdfs:isDefmedBy  Model Documentation: rdfs:comment  Summary  Fundamental ConceptsCHAPTER  RDFS-Plus  Inverse  Challenge: Integrating Data that Do Not Want  to Be Integrated  Challenge: Using the Modeling Language to  Extend the Modeling Language  Challenge: The Marriage of Shakespeare  Symmetric Properties  Using OWL to Extend OWL  Transitivity  Challenge: Relating Parents to Ancestors  Challenge: Layers of Relationships  Managing Networks of Dependencies  Equivalence  Equivalent Classes  Equivalent Properties  Same Individuals  Challenge: Merging Data from Different Databases  Computing Sameness--Functional Properties  Functional Properties  Inverse Functional Properties  Combining Functional and Inverse  Functional Properties  A Few More Constructs  Summary  Fundamental ConceptsCHAPTER 8 Using RDFS-Plus in the Wild  SKOS  Semantic Relations in SKOS  Meaning of Semantic Relations  Special Purpose Inference  Published Subject Indicators  SKOS in Action  FOAF  People and Agents  Names in FOAF  Nicknames and Online Namds  Online Persona  Groups of People  Things People Make and Do  Identity in FOAF  It's Not What You Know, It's Who You Know  Summary  Fundamental ConceptsCHAPTER 9 Basic OWL  Restrictions  Example: Questions and Answers  Adding "Restrictions"  Kinds of Restrictions  Challenge Problems  Challenge: Local Restriction of Ranges  Challenge: Filtering Data Based on Explicit Type  Challenge: Relationship Transfer in SKOS  Relationship Transfer in FOAF  Alternative Descriptions of Restrictions  Summary  Fundamental ConceptsCHAPTER 10 Counting and Sets in OWL  Unions and Intersections  Closing the World  Enumerating Sets with owL'oneOf  Differentiating Individuals with  owl:differentFrom  Differentiating Multiple Individuals  Cardinality  Small Cardinality Limits  Set Complement  Disjoint Sets  Prerequisites Revisited  No Prerequisites  Counting Prerequisites  Guarantees of Existence  Contradictions  Unsatisfiable Classes  Propagation of Unsatisfiable Classes  Inferring Class Relationships  Reasoning with Individuals and with Classes  Summary  Fundamental ConceptsCHAPTER 11 Using OWL in the Wild  The Federal Enterprise Architecture Reference  Model Ontology  Reference Models and Composability  Resolving Ambiguity in the Model: Sets  versus Individuals  Constraints between Models  OWL and Composition  owl:Ontology  owl:imports  Advantages of the Modeling Approach  The National Cancer Institute Ontology  Requirements of the NCI Ontology  Upper-Level Classes  Describing Classes in the NCI Ontology  Instance-Level Inferencing in the NCI Ontology  Summary  Fundamental ConceptsCHAPTER 12 Good and Bad Modeling Practices  Getting Started  Know What You Want  Inference Is Key  Modeling for Reuse  Insightful Names versus Wishful Names  Keeping Track of Classes and Individuals  Model Testing  Common Modeling Errors  Rampant Classism (Antipattern)  Exclusivity (Antipattern)  Objectification (Antipattern)  Managing Identifiers for Classes (Antipattern)  Creeping Conceptualization (Antipattern)  Summary  Fundamental ConceptsCHAPTER 13 OWL Levels and Logic  OWL Dialects and Modeling Philosophy  Provable Models  Executable Models  OWL Full versus OWL DL  Class/Individual Separation  InverseFunctional Datatypes  OWL Lite  Other Subsets of OWL  Beyond OWL 1.0  Metamodeling  Multipart Properties  Qualified Cardinality  Multiple Inverse Functional Properties  Rules  Summary  Fundamental ConceptsCHAPTER 14 ConclusionsAPPENDIX Frequently Asked Questions  Further Reading  Index

章节摘录

插图:

媒体关注与评论

“本书正是我这些年一直期待的,它的出版将帮助更多人真正理解语义网。我相信它对于语义网社区的作用,就像《Java编程思想》之于Java社区。”  ——HenryStory,Sun公司语义网专家“本书的两位作者都是语义网的权威,一个来自学界,一个来自业界,堪称完美组合。他们使原本晦涩难懂的语义网和相关的知识表示标准变得生动易懂。强烈推荐。”  ——MarkA.Musen,斯坦福大学教授,著名开源语义网平台Prot6g6项目负责人“Hendler和Allemang的这本书正是我们一直在寻找的。以前的同类图书对做实际工作的人帮助甚微,而这本书可读性很强,例子丰富而且简单易懂。我推荐大家都去买这本书。”  ——DavidMcComb

编辑推荐

阅读《实用语义网RDFS与OWL高效建模(英文版)》之后,读者可以大大加深对语义网的理解。充满自信地面对今天和未来的技术挑战。由Web之父TimJohnBertlers-Lee提出的语义网标志着又一场革命,它要大大提升万维网,为其内容添加语义,使其成为人们与计算机系统共享数据、信息和知识的更为强大的通用媒介。随着Web2.O和云计算等概念的不断深入人心。语义网的思想和技术已经逐渐融入到各种主流的软件(如Oracle、Photostlop)和Web应用(如社区网站、搜索)中。但是,长期以来,语义网方面的资料严重缺乏,除了标准规范本身之外,相关的图书基本上只是触及皮毛,缺乏实战指导。《实用语义网RDFS与OWL高效建模》(英文版)填补了这一空白。它由两位语义网世界级权威合作撰写。已经成为此领域不可或缺的权威著作。书中针对程序员和领域专家。在透彻而详细地讲述了语义网及其核心技术(RDFS和OW)的基础知识之后。提供了大量解决实际问题的方案、实例、技巧和经验。

图书封面

图书标签Tags

评论、评分、阅读与下载


    实用语义网 PDF格式下载



用户评论 (总计11条)

 
 

  •     对语义网的描述很生动,很具体,非常适合初学者。文字方面,作者也没有用特别晦涩的语言和术语,即便英文水平不是很强,一般人也能看过去。
  •     书拿到了,跟想像得一样质量还不错,因为还没有来得及读,所以不知道内容怎么样了
  •     书拿到后我看几章,究其内容来说还是不错的。由浅到深的讲解了关于语义的一些知识,让你即使没有语义网的基本概念也能对这个时髦的名词有一定的了解。因为后面还没有看到,所以对其内容我还不能确定是否就很合适用来指导进行语义网建模。不过就我个人经验来看,这本书还是值得买下来学习的。
  •     本书质量不错,内容比较充实,讲解的详细,有实例
  •     正在阅读,比起国内的一些书籍,实用性很强。
  •     比较专业,虽然印刷不太好,但内容值得一看
  •     不是最新版本的,但能够买到影印版的也算是不错了。这本书是很不错的语义建模工程类书籍。写得很好。
  •     这本书不错,看着也不枯燥
  •     不愧是两位大牛,概念解释得十分清楚,英文用得也向机器语言一般简单精准,可谓“字字珠玑”了!这个领域,困难的不是你把概念都弄懂,而是你把你弄懂的东西告诉别人,让别人能够理解。这一点Hendler和Allemang做到了!
  •     这是一本完全英文的书籍,对我也是一个挑战。正在学习中。。。
  •     这么薄一本书弄这么贵,纸质不会弄好点么!还不如超市卖的劣质复印纸!
 

百度网盘资源搜索 狗头鹰

250万本中文图书简介、评论、评分,PDF格式免费下载。 第一图书网 手机版

第一图书网(tushu001.com) @ 2017