机器视觉

出版时间:2009-2  出版社:人民邮电出版社  作者:E.R.Davies  页数:934  字数:1162000  
Tag标签:无  

前言

An important focus of advances in mechatronics and robotics is the addition of sensory inputs to systems with increasing "intelligence." Without doubt, sight is the "sense of choice." In everyday life, whether driving a car or threading a needle , we depend first on sight. The addition of visual perception to machines promises the greatest improvement and at the same time presents the greatest challenge.Until relatively recently, the volume of data in the images that make up a video stream has been a serious deterrent to progress. A single frame of very modest resolution might occupy a quarter of a megabyte, so the task of handling thirty or more such frames per second requires substantial computer resources.Fortunately, the computer and communications industries' investment in entertainment has helped address this challenge. The transmission and processing of video signals are an easy justification for selling the consumer increased computing speed and bandwidth. A digital camera, capable of video capture, has already become a fashion accessory as part of a mobile phone. As a result, video signals have become more accessible to the serious engineer. But the task of acquiring a visual image is just the tip of the iceberg.While generating sounds and pictures is a well-defined process (speech generation is a standard "accessibility" feature of Windows), the inverse task of recognizing connected speech is still at an unfinished state, a quarter of a century later, as any user of "dictation" software will attest. Still, analyzing sound is not even in the same league with analyzing images, particularly when they are of realworld situations rather than staged pieces with synthetic backgrounds and artificial lighting.The task is essentially one of data reduction. From the many megabytes of the image stream, the required output might be a simple "All wheel nuts are in place" or "This tomato is ripe." But images tend to be noisy, objects that look sharp to the eye can have broken edges, boundaries can be fuzzy, and straight lines can be illusory. The task of image analysis demands a wealth of background know-how and mathematical analytic tools.Roy Davies has been developing that rich background for well over two decades. At the time of the UK Robotics Initiative, in the 1980s, Roy had formed a relationship with the company United Biscuits. We fellow researchers might well have been amused by the task of ensuring that the blob of jam on a "Jaffacake" had been placed centrally beneath the enrobing chocolate.

内容概要

本书是机器视觉课程的理想教材,作者清晰、系统地阐述了机器视觉的基本概念,介绍理论的基本元素的同时强调算法和实用设计的约束。书中阐述各个主题时,既阐述了基本算法,又介绍了数学工具。此外,本书还使用案例演示具体技术的应用,并阐明设计现实机器视觉系统的关键约束。    本书适合作为高等院校计算机及电子工程相关专业研究生的教材,更是从事机器视觉、计算机视觉和机器人领域研究的人员不可多得的技术参考书。

作者简介

E.R.Davies,著名机器视觉专家。英国物理学会会士、IEE会士、英国机器视觉协会的执行委员。毕业于牛津大学,现任伦敦大学皇家霍洛威学院机器视觉教授。在机器视觉、图像分析、自动视觉检测、噪声抑制技术等方面有丰富的教学和科研经验。

书籍目录

CHAPTER 1 Vision, the ChallengePART 1 LOW-LEVELVISION   CHAPTER 2 Images and Imaging Operations  CHAPTER 3 Basic Image Filtering Operations  CHAPTER 4 Thresholding Techniques  CHAPTER 5 Edge Detection  CHAPTER 6 Binary Shape Analysis  CHAPTER 7 Boundary Pattern Analysis  CHAPTER 8 Mathematical MorphologyPART 2 INTERMEDIATE-LEVELVISION   CHAPTER 9 Line Detection  CHAPTER 10 Circle Detection  CHAPTER 11 The Hough Transform and Its Nature  CHAPTER 12 Ellipse Detection  CHAPTER 13 Hole Detection  CHAPTER 14 Polygon and Corner Detection  CHAPTER 15 Abstract Pattern Matching TechniquesPART 3 3-DVISION AND MOTION 443  CHAPTER 16 The Three-dimensional World  CHAPTER 17 Tackling the Perspective n-Point Problem  CHAPTER 18 Motion  CHAPTER 19 Invariants and Their Applications  CHAPTER 20 Egomotion and Related Tasks  CHAPTER 21 Image Transformations and Camera CalibrationPART 4 TOWARD REAL-TIME PATTERN RECOGNITIONS YSTEMS   CHAPTER 22 Automated Visual Inspection  CHAPTER 23 Inspection of Cereal Grains  CHAPTER 24 Statistical Pattern Recognition  CHAPTER 25 Biologically Inspired Recognition Schemes  CHAPTER 26 Texture  CHAPTER 27 Image Acquisition  CHAPTER 28 Real-time Hardware and Systems Design ConsiderationsPART 5 PERSPECTIVES ON VISION   CHAPTER 29 Machine Vision: Art or Science?APPENDIX Robust StatisticsList of Acronyms and Abbreviations References Author Index Subject Index 

章节摘录

插图:

媒体关注与评论

“本书将图像处理的理论与应用实践完美地结合起来,是机器视觉领域研究人员的必读之作。”  ——John Billingsley,南昆士兰大学“前两版已经奠定了本书在机器视觉领域中独一无二的地位,它是对重要的图像处理和计算机视觉算法进行详细分析的知识宝库!这一版在此基础之上增加了最新进展,是一部全面而且与时俱进的权威著作。”  ——Farzin Deravi,肯特大学

编辑推荐

《机器视觉理论、算法与实践(英文版·第3版)》能够满足广大读者学习和掌握机器视觉知识的需求。全书图文并茂,清晰、系统地阐述了基本概念,提供了丰富的应用案例和代码,强调了算法和实用设计的各种约束条件。新版做了全面的更新,反映了最新进展,内容更加全面。40年来,机器视觉在各行各业得到了广泛的应用,包括自动检测、机器人组装、行车导引、流量监控、签名验证、生物测量、遥感图像分析等。但是另一方面,面对大量新的研究成果,要充分理解相关的理论和应用,进行算法和系统的设计,却越来越困难。《机器视觉理论、算法与实践(英文版·第3版)》是机器视觉课程的理想教材,已经成为国内外很多名校的指定教学参考书。同时,《机器视觉理论、算法与实践(英文版·第3版)》也是工程技术人员不可或缺的权威参考书。

数据来源网站

成功/励志PDF资源网,更多图书可访问PDF图书下载

图书封面

图书标签Tags

评论、评分、阅读与下载


    机器视觉 PDF格式下载



用户评论 (总计13条)

 
 

  •     机器视觉:理论、算法与实践感觉很不错,是一本值得读的书
  •     该书对机器视觉/计算机视觉领域的方方面面进行了阐述,有广度有深度,可谓是视觉入门童鞋的理想参考书之一。虽然,与Ponce的“计算机视觉”相比,该书还有一定差距的。
  •     可惜现在又出了第四版了,没办法新版就看电子版的算了。
  •     此书适合扩展视野和入门。
  •     非常不错额书
  •     第四版已经出来了,我就看电子版的算了。书的内容没得说,纸张可就不太好。人邮局社出版一些英文原版书本是好事,选材也还不错,可就是自身功夫不做好,读者受害。上次我买一本 C和指针(英文版) ,印刷模糊,没法看,我随便找个E文版pdf格式的再打印出来也比它们的质量强上百倍。不知他们是怎么操作的。
  •     不错,挺好的,呵呵,不过是英文,看着有些吃力哦
  •     买来后还没有怎么看,书的印刷质量还可以
  •     这本书是由伦敦大学教授所著,国外的学者和中国大陆的有很大区别,大陆学者一年可以出几十本书,但外国学者几十年才会出一本书,例如这位英国教授,他一生总共写了两本书,这本就是其中之一不足的地方是这本书比较老,记得是2003年在AMAZON.COM上就发售了,在中国大陆2009才在AMAZON.CN上看到,不过尽管如此,这本仍然值得购买和阅读,尤其是当你想找一本关于机器视觉的权威著作当然能在大陆目前这种急功近利,铜臭味和腐败气息浓厚的混乱局面下读到这种大家之作,实在要感谢不计投入和回报的“人民邮电出版社”!在此,祝愿像“人民邮电出版社”这样以引进大家之作为目标的,有良心有眼光的出版社越走越好!(最近我还注意到“人民邮电出版社”又出版了一本《概率论沉思录》的概率论巨著,再次感谢你们!)
  •     写的十分的好。十分优秀的一本书,把机器视觉基础部分全部讲解的很清楚,而且很有深度。我花了两周时间,全部看完了,感觉真的是受益匪浅。而且,这是我机器视觉的入门书,我觉得这本书十分适合入门。
  •     偏工程,在做一些实际的东西的时候很有用
  •     算法阐述很清楚,案例也切合工程实际
  •     感觉这本书从内容的广度和深度,与David A. Forsyth的Computar Vision:a modern approach,还是有很大的差距的。个人感觉。另外,书有点太贵了。买来后,只是翻看了部分章节,了解不是很全面。这本书对于算法的阐释,主要还停留在语言说明方面的,数学推导比较少。
 

250万本中文图书简介、评论、评分,PDF格式免费下载。 第一图书网 手机版

第一图书网(tushu001.com) @ 2017